
Extended Abstract

Motivation Humans frequently encounter environments where priorities must shift rapidly in
response to new, uncertain information—such as a day trader reacting to volatile markets or an
arcade-goer maximizing fun with limited resources. This project investigates whether Hierarchical
Reinforcement Learning (HRL) agents can emulate such adaptive behavior in the face of hidden and
shifting rewards. Specifically, the study explores if HRL agents can strategically select subgoals and
recognize when to cut their losses (via a "recall" action) in a reward-uncertain setting, extending
beyond prior works that focus on simpler recovery or adaptation mechanisms.

Method & Implementation A custom Gridworld environment was developed where an agent must
collect items to reach a target inventory value of 100 as efficiently as possible. While past item values
are known, current values remain hidden until an item of that type is picked up, introducing reward
uncertainty. The values are generated randomly from 4 different distributions, some of which are
inspired by leading stock market models. The agent can move in four directions or use a recall action
to return to the start, forfeiting collected items.

The HRL architecture features an upper policy (rewarded for inventory progress) and a lower
policy (rewarded for subgoal achievement and environment feedback). The most effective approach
combined Behavioral Cloning (BC) with Conservative Q-learning (CQL), while other techniques
such as Hindsight Experience Replay (HER) and Random Network Distillation (RND) did not yield
improvements. Several grid layouts (Maze, No Walls, Cross, Unbalanced Cross) were used for
training and evaluation. Comparisons included a base model without BC or CQL, and models where
we disabled recalling and/or switched out our default Greedy Search expert for an optimal policy
expert . Experiments were also conducted testing variations on upper policy implementations, which
primarily focused on adjusting the extent to which the upper policy controlled the recall action.

Results Performance varied across environments and methods. In the Maze layout, the best HRL
method (CQL-R) achieved a 10.6% success rate, outperforming the base agent (0%) but lagging
far behind the Greedy expert (100%). In the No Walls layouts, HRL agents with more conservative
recalling (CQL-R, RH + MR) succeeded over 80% of the time (compared to 0% for the based
model), while those which attempted to recall more had trouble achieving the goal consistently. In
the Cross and Unbalanced Cross layouts, non-base HRL agents approached expert-level success rates
(100% or near), with improved average rewards and speed relative to the optimal path. Methods
utilizing recalls more performed especially well, performing even better than the Greedy expert
on Unbalanced Cross in both Rewards/Episode and Speed wrt. Optimal. Finally, our upper policy
variations showed potential with higher low success rates, but tended to train slower. However, the
upper policy variations showed superior results on the No Walls layout, suggesting that there is room
for further exploration.

Discussion & Conclusion Our problem proved nontrivial for RL agents. Improvements to the
observation space and rewards were likely needed, but time constraints limited us. We attempted
an RL² meta-RL baseline, but couldn’t finish implementation. Removing the upper policy might
have yielded better results, though at the cost of performance in high-variance environments. Despite
numerous bugs being introduced by our hacky Gymnasium environment, which hid several bugs
until late, we believe our setup presents a valuable and challenging benchmark for adaptive agents,
reflecting real-world adaptation tasks.

Future directions include expanding to continuous action spaces for realism (e.g., household robots),
exploring suboptimality detection and human-in-the-loop learning, and refining our recall action,
which complicated training but enables richer policy behavior.

Exploration in a Reward Uncertain Environment

Denis Liu
Department of Computer Science

Stanford University
dfliu@stanford.edu

Victor Li
Department of Computer Science

Stanford University
vli42@stanford.edu

Abstract

This study investigates the abilities of hierarchical reinforcement learning (HRL)
agents to adapt to environments with hidden and shifting rewards through strate-
gic subgoal selection and recall mechanisms. We develop a custom Gridworld
environment where agents must collect items with uncertain values to reach target
inventory scores. Our implementation combines behavioral cloning with conser-
vative Q-learning in a hierarchical architecture, achieving 81.9% success in open
layouts but revealing fundamental limitations in complex mazes (10.6% success vs
100% expert baseline). Ultimately, we find that recall actions, while theoretically
valuable, destabilize training; CQL improves learning under sparse feedback; and
hierarchical policies struggle with continuously shifting rewards.

1 Introduction

Modern decision-making agents must navigate environments where reward structures shift
unexpectedly–from financial traders reacting to volatile markets to robotic systems adapting to
equipment failures. While humans demonstrate remarkable capacity for strategic course-correction,
existing reinforcement learning methods struggle with these dynamics. Our work attempts to address
this gap through two key contributions: (1) A novel Gridworld environment modeling hidden re-
ward discovery and strategic recall and (2) An HRL architecture combining behavioral cloning with
conservative Q-learning.

2 Related Work

Adaptive reinforcement learning in non-stationary and partially observable environments has attracted
increasing interest due to its relevance in real-world settings such as robotics, autonomous navigation,
and personalized recommendation systems. Our work is inspired by three key areas: strategic
adaptation to reward uncertainty, hierarchical control for long-horizon decision making, and memory-
augmented RL for effective recall of previously observed information.

2.1 Adaptation

Several prior approaches explore how agents can adapt to dynamically shifting rewards. Du et al.
(2024) , for instance, propose a trial-and-error strategy for rapid online adjustment by detecting
suboptimality at deployment time. However, they address suboptimality by utilizing a simple fallback
policy (an arm retraction) and lack a mechanism to address a task which requires more complex and
strategic abandonment.

Meta-RL approaches such as Duan et al. (2016) and Finn et al. (2017) enable fast task adapta-
tion via gradient-based meta-training, but typically assume clear episodic task boundaries (i.e., a
distinction between meta-exploration and meta-testing phases)—an assumption that does not hold

Stanford CS224R 2025 Final Report

in our Gridworld environment. In our setting, task identity is latent and may shift mid-episode,
effectively blurring the distinction between meta-exploration and meta-testing. Further improvements
to meta-RL, such as the decoupling strategy proposed by Liu et al. (2020), enhance generalization by
separating exploration and exploitation strategies. However, this strategy relies on explicit task identi-
fiers during training for conditioning or relabeling, a luxury not easily available in our environment
with hidden and dynamic reward structures.

2.2 Hierarchical Reinforcement Learning (HRL)

HRL introduces temporal abstraction through subgoals or skills, enabling agents to handle long-
horizon tasks with sparse feedback. FeUdal Networks (FuNs) Vezhnevets et al. (2017) and HIRO
Nachum et al. (2018) are among the seminal architectures in this domain. FuNs utilize a manager-
worker hierarchy with explicit goal setting, whereas HIRO improves sample efficiency through
subgoal relabeling and off-policy learning. Our architecture draws inspiration from HIRO but
eschews the relabeling strategy as it seems unsuited for discrete action spaces.

2.3 Behavioral Cloning and Offline Objectives

Finally, our work leverages behavior cloning (BC) to initialize subgoal policies and conservative
Q-learning (CQL) (Kumar et al., 2020) to stabilize value estimation under partial observability.
CQL has been shown to improve robustness in offline settings by avoiding value overestimation
on out-of-distribution actions, particularly in sparse reward contexts. We also attempt to integrate
strategies such as hindsight experience replay (HER) (Andrychowicz et al., 2017) as well as random
network distillation (RND) (Burda et al., 2018).

3 Method

Our approach involves (1) environment creation and (2) experimenting with hierarchical RL to solve
the problem.

3.1 Environment

Our environment problem is defined as follows:

For each episode, the agent starts at some position (which may be randomized or fixed depending
on the map). There are items of 5 different types. Each item type possesses a “history” of previous
values, as well as a hidden (to the agent) current value. These values are assigned by randomly
generating them on reset by sampling from one of four random distributions with the intention to
create an artificial stock market of sorts.

• Pure Normal Distribution
Here, the current value and every value in the history are all sampled from the same normal
distribution.

• Progressive Normal Distribution
Here, the each value is sampled from a normal distribution that uses a preset σ (standard
deviation) and µ (mean) equal to the value sampled right before it in the history.

• Geometric Brownian Motion (Maiti, 2021)
This is commonly used to model stock prices. We use the Euler–Maruyama method (with a
time step of 1.0) to generate new samples. Each sample is defined as

St = St−1 · exp
(
µ− 1

2
σ2 + σ · ε

)
where µ is drift, σ is volatility, and ε randomly generated noise sampled as ε ∼ N (0, 1)

• Jump Diffusion
We simulate a discrete-time approximation of Merton’s Jump Diffusion Model (Merton,
1976), which is an extension of Geometric Brownian Motion that includes large, random
jumps. Each sample is defined as

2

Figure 1: Hierarchical decision-making framework. The upper policy πu issues subgoals gt ∈
Iloc ∪ recall based on global state st. The lower policy πl executes primitive actions at ∈ A
conditioned on gt. Dashed arrows indicate reward signal flow.

log

(
St

St−1

)
= µ− 1

2
σ2 + σ · ε+

N∑
i=1

Yi

µ, σ, and ε are the same as in Geometric Brownian Motion, N is a randomly generated
number of jumps, and Yi are each randomly generated jump sizes for each jump.

At each step, the agent can take the typical grid actions (up, down, left, right) as well as a “recall”
action. The agent picks items up when entering the square which they are located in, attaining a score
equal to the value of the item. Because the agent is aware of its total inventory score, it also knows
the exact current value of every other item of the same type (e.g., picking up a banana item for the
first time reveals the value of all bananas on the grid). The objective is to obtain a specified total goal
score in as few steps as possible.

“Recalling” is an action whereby the agent’s position is reset to the initial position. The agent forfeits
all of its collected items, which return to their original locations. Recalling does not reset the step
counter, but the agent retains all knowledge it gleaned from its exploratory actions (i.e., item values).
Recalling is intended to be used when the agent learns that an item value may not have been what
it expected, unveiling a suboptimal initial trajectory. With a recall, the agent may find itself better
positioned to take advantage of the new information. One of the primary purposes of our project was
to improve agent recall usage, as it would show that the agent acquired some sense of an ability to
adapt to surprising observations.

We assign the following environment rewards for each step:

• -1 if a recall is performed

• +1 if an undiscovered item is collected (to promote exploration)

• +0.1 if a discovered item is collected

• +10 if the goal score is reached

• -0.5 otherwise

3.2 Hierarchical Architecture

Denote the set of item locations to be Iloc, the action space as A, the observa-
tion space as O, and the environment reward function as R. Also, let τi,j :=
⟨sisi+1 . . . sj , aiai+1 . . . aj , riri+1 . . . rj , si+1si+2 . . . sj+1, gi,j⟩ (just a subtrajectory with consis-
tent goal gi,j starting at step i and ending at step j). Finally, define gs(τi,j) ∈ [0, 1] to be the difference
in inventory value at sj and si all over the goal score. The function gs represents the progress made
toward the goal score for some subtrajectory. Our architecture decomposes decision-making into
strategic and tactical levels (Fig. 1):

• Upper Policy (πu: O → Iloc):
The upper policy takes in a full observation and selects a subgoal from item locations Iloc.
Given a subtrajectory τi,j , the upper policy receives reward

Ru(τi,j) =

j∑
k=i

rk + 0.1 · gs(τi,j). (1)

3

• Lower Policy (πl: Oagent_loc × Iloc → A):
The lower policy takes in the agent state and a subgoal g ∈ Iloc from the upper policy and
returns an action. The lower policy’s reward function is:

Rl(st, gt) = Ist=gt + 0.1 · R(st) (2)

where Ist=gt is the indicator function.

Key Implementation Details:

• State/observation representation includes agent position, item locations, item values (if
known), item histories, and whether the item has been picked up or not.

• The upper policy is called whenever the lower policy completes the subgoal or if n amount
of timesteps are reached. In our experiments, we set n = 30.

• Both the upper and lower policies are modeled as DQNs.

3.3 Training Techniques

We implemented several RL enhancements. Namely, we tried different levels of permuting Hindsight
Experience Replay (HER), Random Network Distillation (RND), Behavioral Cloning (BC), and
Conservative Q-learning (CQL).

In particular, HER was implemented while collecting trajectories for the lower policy by relabeling
the goal provided by the upper policy with actual item locations that the agent reached along the way.
Similarly, we implemented RND into our Q-networks because we found that the agent would find
itself going back and forth between two states frequently. After trying several variations of RND
(both in the higher and lower policies) and HER, we found that the methods provided no significant
improvement in initial experiments, and thus, leave the results out of this paper.

Because model convergence tended to be extremely slow without BC, we implemented BC and
explored its effects in our experiments. We experiment by providing different expert trajectories:
those taken from a greed search policy which always paths efficiently to the closest item and an
optimal policy which has all item value information and always selects the fastest path to achieve the
desired goal score (implemented with a brute-force BFS).

Finally, we found that CQL, when used in conjunction with BC, typically led to quicker convergence,
so we ultimately decided to stick to the CQL+BC combination for our additional experiments. We
hypothesize that CQL improves performance because it helps the agent better align with the expert
that BC was performed on.

3.4 Model Variations

We also experimented with different variations of the upper policy, where we attempted to improve
our model by granting the upper policy differing levels of control of the “recall” action. Our hope
was to show that delineating the “recall” decision-making process to the upper policy would both
lessen the learning load on the lower policy and enable more intelligent usage of the action because
we found that the agent typically tended to only use recall to a detrimental effect.

Concretely, our variations to the upper policy are enumerated below:

• Modifying Reward: we removed environment rewards from the upper policy’s reward
function and used only progress as a metric. We do this because it encourages the upper
policy to select a subgoal that is farther away, which would be negatively penalized by
environment reward. That is,

Ru(τi,j) = gs(τi,j).

• Adding Initial State as Item Location Subgoal: by explicitly allowing the upper policy to
select the initial state as a subgoal, we encourage the lower policy to take the recall action
when the upper policy selects the initial state subgoal.

• Disabling Recall in the Lower Policy: rather than setting a subgoal for the lower policy, the
higher policy instead is in full control of the recall action, and the lower policy only takes
grid actions.

4

(a) Maze (b) Cross (c) No Walls

Figure 2: Example grid layouts used in training and evaluation.

4 Experimental Setup

We ran experiments on four grid layouts, which are meant to test different capabilities of our agents.
Figures 2 shows the sample grids used for training and evaluation. Note that Cross and Unbalanced
Cross have the same layout but differing item values.

• Maze: Complex navigation requiring exploration. Items are relatively sparse, and walls
provide a major challenge. Item values and initial position are randomized.

• No Walls: Pure value comparison and route planning. The lack of walls makes navigation
much more simple, as do the static item locations. Item values and initial position are
randomized.

• Cross: Balanced risk/reward paths. Four items all lay at an equal distance from the fixed
starting point (the center of the cross). Agents must always always go through the center in
order to navigate to new items. Only item values are randomized.

• Unbalanced Cross: Quick selection of and navigation to the most valuable item. The only
difference between this layout and the Cross layout is the item values. One of the four items,
chosen at random, always has value greater than or equal to the goal score, with the other
three having little to no value. Like Cross, the initial position isn’t randomized

First, we compare the effects of BC, CQL, and the existence of the recall action to the greedy search
baseline as well as a model which uses none of the RL enhancements. Then, we performed similar
comparisons for the variations to the upper policy.

We trained each model for a set number of epochs for each map, varying the number of epochs by
map difficulty, and tested them on the same 160 randomly generated maps for each grid layout using
the following evaluation metrics:

• Success Rate: Whether the agent succeeds in achieving the goal score

• Low Success Rate: Whether the agent succeeds in reaching the lower policy goal

• Rewards per Episode: The average rewards obtained by the agent each episode

• Speed wrt. Optimal: The average speed of each path compared to the optimal policy. A
path that fails to reach the goal score has a zero speed by default, and one which reaches the
goal in the same amount of time as the optimal has a speed of one. More concretely, given a
set of episodes E,

speed(π) =
∑

e∈E speed_of_path(π(e))
|E|

where

speed_of_path(p) =

{
|optimal|

|p| if p.score ≥ goal_score
0 if p.score < goal_score

and π(e) is the generated path p for episode e.

5

Table 1: Maze
Method Success Rate Low Success Rate Rewards/Episode Speed wrt. Optimal

Base 0 0.338 -81 0
CQL 0.063 0.606 -77.3 0.018
CQL* 0.01 0.569 -82.5 0.004
CQL-R 0.106 0.619 -68.1 0.031
CQL*-R 0.081 0.625 -68.9 0.019
IP 0.0188 0.475 -81.8281 0.0056
IP + MR 0.0188 0.7 -83.0581 0.0035
RH + MR 0.075 0.6438 -75.0987 0.0153
Greedy 1 – -4.23 0.854

5 Results

5.1 Quantitative Evaluation

Tables 1-4 show key performance metrics across different environments. The best non-greedy result
in each columnn is bolded (except for success rates where multiple of our models achieved a 1.0
success rate). We use the following shorthands for method name:

1. Base: the base model without BC or CQL
2. CQL: the base CQL model with a greedy expert for BC (default model which we ablate

further)
3. CQL*: CQL with an optimal expert for BC (not the default since the optimal expert has

access to hidden item values)
4. CQL-R: CQL model with greedy BC expert, but removing the ability to recall
5. CQL*-R: CQL model with optimal BC expert, but removing the ability to recall
6. Upper Policy Variations (same parameters as CQL)

• IP: Adding Initial Position to upper policy subgoals
• IP + MR: Adding Initial Position to upper policy subgoals and modifying upper policy

reward function
• RH + MR: Migrating Recall action completely to the upper policy and modifying upper

policy reward
7. Greedy: Greedy search (the same as the greedy expert policy)

Critically, the Base method performs much worse than other agents in most scenarios. We also
observe generally improved success rates without the recall action, showing that recalling tends to be
an issue for the lower policy. This is further supported by the fact that our upper policy variations
tended to have better low success rates. Despite this, we found the upper policy variations to have
little improvement in success rate or reward, with the exception of the No Walls layout. For example,
RH + MR reaches a reward/episode almost equivalent to CQL-R, the best performing model, while
still using recalls. We hypothesize that the RH + MR method has the highest potential out of all the
methods but takes longer to train as the upper policy’s task becomes much harder.

5.2 Qualitative Analysis

We observe a few key patterns in recalling and BC expert tradeoffs.

5.2.1 Recalling

Recall actions negatively correlated with success across most maps. Since recalling resets the current
inventory, doing so too frequently prevents the agent from effectively progressing to the goal score.
From manual observation, we see that our low policy will often successfully reach an item, get
assigned a goal item that is further away, and recall once it sees that it isn’t getting to the item quickly
enough.

6

Table 2: No Walls
Method Success Rate Low Success Rate Rewards/Episode Speed wrt. Optimal

Base 0 0.138 -85.5 0
CQL 0.406 0.95 -58.8 0.153
CQL* 0.231 0.931 -65 0.08
CQL-R 0.819 0.988 -32.7 0.365
CQL*-R 0.706 1 -39.7 0.298
IP 0.3875 0.9937 -59.66 0.1528
IP + MR 0.606 1 -44.7813 0.288
RH + MR 0.8375 1 -33.2606 0.3769
Greedy 1 - -2.07 0.897

Table 3: Cross
Method Success Rate Low Success Rate Rewards/Episode Speed wrt. Optimal

Base 0 0.95 -78.9 0
CQL 0.219 1 -69.5 0.101
CQL* 0.563 1 -48.3 0.353
CQL-R 0.494 1 -52 0.226
CQL*-R 0.869 1 -17.2 0.703
IP 0.6313 1 -44.7 0.3794
IP + MR 0.0188 1 -77.68 0.0075
RH + MR 0.0375 0.9875 -71.54 0.025
Greedy 1 – -5.2 0.943

Much of our work was made in an attempt to resolve this issue. In the end, we were not able to
completely resolve the issue. However, we formulated the Unbalanced Cross as a grid specifically
designed to encourage recalling. Because of the way the grid is designed, a single item is enough
to reach the goal score, and the other three items put together will never be enough. Consequently,
there is no downside to recalling after picking up one of the low-value items, except for negative
environment reward. However, there is upside–the agent saves time by teleporting to the initial
position, getting closer to the other items (including the single high value item). Because of this,
models that were recalling more tended to work better on Unbalanced Cross.

5.2.2 BC Expert

There are notable tradoffs between using an optimal expert versus using a greedy expert for behavior
cloning. When trained with BC using the greedy search as an expert, our upper level policy learns to
select closer item goals just like the greedy search. This worked better on the Maze and No Walls
layouts, where the agents who made more consistent progress by picking up close items achieved
better results.

On the other hand, when trained with BC using the optimal policy as an expert, the higher level policy
will learn to pick items with higher expected values at the potential cost of distance. On Maze and
No Walls, the extra distance makes it more difficult for the lower level policy to reach each item
goal, taking longer to do so even on successes. This also exacerbates the recalling problem discussed
above. However, the equidistant items on Cross and Unbalanced Cross mitigate this downside, and
the superior value-based selection allows the higher level policy to more consistently pick the high
value items.

6 Discussion and Conclusion

Ultimately, we found that our problem was nontrivial to solve for agents. Likely, several improvements
could have been made to the observation space and reward functions, but we ran out of time. We also
attempted to create an RL2 agent as a meta-RL baseline, but didn’t complete the implementation in
time. In addition, we likely would have achieved closer-to-greedy results had we eschewed the upper

7

Table 4: Unbalanced Cross
Method Success Rate Low Success Rate Rewards/Episode Speed wrt. Optimal

Base 0.231 0.538 -128 0.05
CQL 1 1 -2.14 0.4
CQL* 1 1 1.81 0.474
CQL-R 1 1 -1.86 0.369
CQL*-R 0.975 1 -2.23 0.4
IP 1 1 1.1325 0.459
IP + MR 1 1 0.14 0.4538
RH + MR 0.8188 0.9937 -18.6175 0.317
Greedy 1 – -1.26 0.415

(a) CQL-R (b) CQL*

Figure 3: Example trajectories generated by CQL-R and CQL* on an instance of Unbalanced Cross.
Each color arrow represents the agent navigating to a new item. We can see that CQL-R first collects
the carrot and cherry (which are low value) before finally making its way to the banana (which is
the high value item in this episode). On the other hand, CQL* also collects the carrot first but then
navigates to the banana afterward since it used the optimal policy for BC and has learned to better
select high value items. As it’s navigating to the banana, it’s able to recall (represented by the gap in
the two purple arrows) to shorten the distance needed to get there.

policy, which likely introduced instability to our learning, but we suspect that such an agent would
perform poorly in certain environments where the item distributions have large variance.

One of the largest challenges we had during our time working on this project was that our gymnasium
environment was a little too hacky–had it been better structured, we would have caught several bugs
that we found late in the quarter. However, we still hope that our environment poses an interesting
(and surprisingly difficult) problem that can be used in the future as a potential baseline for adaptive
agents to solve. The sort of adaptation that we target is ubiquitous in everyday human life and would
certainly be a great feat for an AI to overcome.

In the future, we would like to explore possibilities of expanding our environment to a continuous
action space, which would reflect a more applicable, real-life task, such as that of a household
robot. Further, we hope to further explore the idea of suboptimality detection in the environment:
incorporating humans in the loop to give advice or simply developing a better recovery policy would
pose an interesting challenge. Finally, we believe our recalling action was an interesting addition that
made our training more difficult but allows for much more nuanced policy design.

7 Team Contributions

• Denis: wrote model architectures, created initial environment, ran experiments, large
refactors

• Victor: environment work involving item distributions/randomizations necessary for ex-
perimental work, wrote evaluation code, manual agents (optimal/greedy), ran experiments,
some model tweaking

8

Changes from Proposal As mentioned in the project milestone, we generally changed our proposal
work, though the original inspirations remained the same. The reason for this is that our proposal was
not well-defined and vague, and we only formalized our problem setup afterwards.

References
Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. 2017. Hindsight Experience
Replay. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett (Eds.). 5048–5058. https://proceedings.neurips.cc/paper/2017/hash/
453fadbd8a1a3af50a9df4df899537b5-Abstract.html

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. 2018. Exploration by Random
Network Distillation. CoRR abs/1810.12894 (2018). arXiv:1810.12894 http://arxiv.org/
abs/1810.12894

Maximilian Du, Alexander Khazatsky, Tobias Gerstenberg, and Chelsea Finn. 2024. To Err is
Robotic: Rapid Value-Based Trial-and-Error during Deployment. arXiv:2406.15917 [cs.RO]
https://arxiv.org/abs/2406.15917

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. 2016.
RL$ˆ2$: Fast Reinforcement Learning via Slow Reinforcement Learning. CoRR abs/1611.02779
(2016). arXiv:1611.02779 http://arxiv.org/abs/1611.02779

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (Proceedings of Machine
Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 1126–1135. http:
//proceedings.mlr.press/v70/finn17a.html

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conservative Q-Learning
for Offline Reinforcement Learning. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
0d2b2061826a5df3221116a5085a6052-Abstract.html

Evan Zheran Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. 2020. Decoupling Explo-
ration and Exploitation for Meta-Reinforcement Learning without Sacrifices. arXiv preprint
arXiv:2008.02790 (2020).

Moinak Maiti. 2021. Geometric Brownian Motion. 67–88. https://doi.org/10.1007/
978-981-16-4063-6_3

Robert C. Merton. 1976. Option pricing when underlying stock returns are discontinuous. Journal of
Financial Economics 3, 1-2 (1976), 125–144.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Data-Efficient Hierarchical
Reinforcement Learning. arXiv:1805.08296 [cs.LG] https://arxiv.org/abs/1805.08296

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. 2017. FeUdal Networks for Hierarchical Reinforcement Learning.
In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 3540–3549. https:
//proceedings.mlr.press/v70/vezhnevets17a.html

9

https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
http://arxiv.org/abs/1810.12894
http://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2406.15917
http://arxiv.org/abs/1611.02779
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://doi.org/10.1007/978-981-16-4063-6_3
https://doi.org/10.1007/978-981-16-4063-6_3
https://arxiv.org/abs/1805.08296
https://proceedings.mlr.press/v70/vezhnevets17a.html
https://proceedings.mlr.press/v70/vezhnevets17a.html

	Introduction
	Related Work
	Adaptation
	Hierarchical Reinforcement Learning (HRL)
	Behavioral Cloning and Offline Objectives

	Method
	Environment
	Hierarchical Architecture
	Training Techniques
	Model Variations

	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Analysis
	Recalling
	BC Expert

	Discussion and Conclusion
	Team Contributions

